

CINDIS Cold Interferometric Nulling Demonstration In Space

Charley Noecker

David Osterman

Bill Babb

Roger Linfield

Steve Kilston

Andrew Cavender

Dan Miller

Mike Lieber

Jack Jacobs

Honeywell

Motivation

- Extra-Solar Planets Advanced Concepts NRA
 - Category 2 Space mission for TPF technology demonstration
 - Cost guideline \$300M
- Phase 1 study <u>technology demo only</u>
 - Three objectives, in this order of priority:
 - Adhere to \$300M cap
 - Maximize technology demonstration value to TPF
 - Enable useful scientific investigations
 - This "unusual" ordering led to a design which is smaller and simpler than a science-oriented interferometer would be
- Phase 2 study <u>add compelling science</u>
 - Upgrades which would cost-effectively enable science
 - → Suggest scope for a possible <u>technology</u> and <u>science</u> precursor mission

The "Phase 1" CINDIS design

- Technology demonstration mission for TPF interferometers
- First nulling interferometry in space, on a fixed structure

Wavelength range6-12μmOptics temperature~50KTelescopes2 (4 goal)Telescope diameter40 cmBaseline2 mCryogenSolid H₂DeploymentsShadesOrbitL2/SIRTFTotal mass472 kgTotal power307 W		
Telescopes 2 (4 goal) Telescope diameter 40 cm Baseline 2 m Cryogen Solid H ₂ Deployments Shades Orbit L2/SIRTF Total mass 472 kg	Wavelength range	6-12µm
Telescope diameter 40 cm Baseline 2 m CryogenSolid H_2 DeploymentsShadesOrbitL2/SIRTFTotal mass 472 kg	Optics temperature	~50K
Baseline 2 m CryogenSolid H_2 DeploymentsShadesOrbitL2/SIRTFTotal mass 472 kg	Telescopes	2 (4 goal)
	Telescope diameter	40 cm
Deployments Shades Orbit L2/SIRTF Total mass 472 kg	Baseline	2 m
Orbit L2/SIRTF Total mass 472 kg	Cryogen	Solid H ₂
Total mass 472 kg	Deployments	Shades
	Orbit	L2/SIRTF
Total power 307 W	Total mass	472 kg
Total power 307 W	Total power	307 W

Features of the "Phase 1" system

- Baseline ~2 meters
 - No science requirements for a minimum baseline
 - Non-deploying optical structure fits horizontally in launch shroud (simplest approach)
 - Optional soft structure (1st mode~ 5Hz); strongback for launch & early observations
 - Demonstrates vibration isolation for longer TPF structures; further model validation
- Warm-side active isolation system
 - Suppresses vibrations to a level sufficient for a deep null
 - Low-risk way to provide a quiet platform for the nulling demonstrations
- Stored cryogen
 - Cools Si:As detectors for low noise
 - Cheapest and most reliable cooling system for a short (6-9 month) mission
- Drift-away orbit
 - Good thermal stability
 - Easy passive cooling

Optical schematic (Phase 1)

- Standard 2-aperture design (Bracewell)
- Controls (sensors, actuators)
 for tip-tilt and piston
- Nulling combiner sums optical fields with a wavelength-independent 180° phase offset
 - Several designs under development around the world
- Spatial filters after nulling combiner
- Low-resolution spectrometer $(\lambda/\Delta\lambda \sim 3-20)$

Instrument Features (Phase 1 system)

• Nulling combiner is entirely contained in Solid-H₂ cryostat

- 8 kg H₂ provided

• Wavelength range 6-12 μm

Strongback for launch

- Deployable thermal shield
 - 50K passive cooling
- Gamma-alumina struts
- 2 m² radiators

Instrument Controls Diagram (Phase 1)

Spacecraft features (Phase 1 system)

- Based on the Ball RS-300 small S/C functional architecture
- Single-string
 - Minimizes mass & cost
 - High probability of mission success for 6-month mission
 - Heritage for multi-year single-string buses
- Ball's ASPEN integrated hardware & software avionics suite
- Earth-trailing drift-away orbit
- Delta 2326-9.5 launch vehicle
- Cold gas reaction control system

Spacecraft features (Phase 1 system)

- Based on the Ball RS-300 small
 S/C functional architecture
- Single-string
 - Minimizes mass & cost
 - High probability of mission success for 6-month mission
 - Heritage for multi-year single-string buses
- Ball's ASPEN integrated hardware & software avionics suite
- Earth-trailing drift-away orbit
- Delta 2326-9.5 launch vehicle
- Cold gas reaction control system

Parameter	Allocation	Predicted Performance
S/C Bus Mass	245 kg	198 kg
S/C Bus Power	208 W	177 W
Instrument Power Allocation	100 W	65 W
Attitude Control	3-axis stabilized	3-axis stabilized
Pointing Accuracy (X & Y, 3-σ per axis)	3 arcsec	1.5 arcsec
Pointing Accuracy (Z axis, 3-σ per axis)	30 arcsec	15 arcsec
Incident Solar and Bus Parasitic Heat Load Transmitted to Instrument	< 0.5 W	< 0.4 W
Sunshield Off-Pointing (maximum angle from sun line)	30°	30°
Instrument Data Storage	<154 MB / week	154 MB / week
Downlink Data Rate	100 kbps	> 380 kbps
Uplink Data Rate	500 bps	2 kbps

Parameter	Value
Launch Date	June 1, 2007
Launch Vehicle	Delta 2326
Mission Duration	6 months
Orbit Type	Earth-Trailing, Heliocentric
Max Earth Range	0.07 AU
Max Sun Range	1.04 AU
SPE Angle at L+30 D	56 degrees

Pointing and delay jitter performance with Honeywell VISS

Pointing and delay jitter meet requirements with

5 Hz truss (soft like 40m TPF)

+

Honeywell's Vibration Isolation & Suppression System (VISS) at bus-instrument interface (warm)

+

Passive dampers (0.1%) on truss

Controls Allocations for Structural Jitter in Pointing and Optical Delay

Assumes instrument control systems can suppress remaining jitter

Architecture changes for Phase 2 CINDIS

- Dual Bracewell (4 telescopes)
 - Control of systematic error sensitivity \rightarrow sufficient for finding planets
 - Suppress signals from exo-zodi → reduce/eliminate confusion source
 - Fully demonstrates the same technologies needed for TPF
- Longer baseline (15m+)
 - Angular resolution adequate to find known extrasolar giant planets
 - Structural vibration control scalable to full size TPF
- Expandable truss
 - Efficient packaging, stable structure
- Apertures 0.4 m diameter
 - Adequate for controls, planet detection
 - Preliminary value, TBR

Mission requirements (Phase 2)

- Principal objectives
 - Demonstrate direct detection of planets at near-TPF-level sensitivity
 - Deliver a wealth of performance data to inform TPF system engineering

CINDIS Phase 1 | CINDIS Phase 2

	req't/goal	req't/goal	TPF	Remarks
Null depth	10-5 / 10-6	10-5 / 10-6	10-6	Keep small to aid stability
Null depth stability (planet- mimicking systematics)	2.5×10 ⁻⁷ / 2.5×10 ⁻⁸	2.5×10 ⁻⁷ / 2.5×10 ⁻⁸	2.5×10 ⁻⁸	Keep systematics <20% of planet (1–10 × earth)
Angular resolution	No req't	150 mas / 80 mas	40	Added req't to observe some planets
Optical passband	>6 μm	7-12 μm	7-17 μm	"Instrument similar to TPF" vs. "do planet science"
Stability time-scale	0.08 hour	5-10 hr	5-10 hr	Demonstrating instrument vs. seeing planets
Number of stars	6-10	6 / 30	30-150	Now have specific stars
Sky coverage (maximum angle from anti-sun)	30°	30°	>45°	Need access to known target stars
Rotation around LOS	45°	180°	180°	Demo vs. planet search

Planet detection depends on both null depth and long-term stability of the system

- Photon counting noise is not the only limitation to planet sensitivity
- Also must consider systematic variations which mimic planet signals
- Without chopping, a major concern is systematics at ~DC (few milliHertz)
 - Example: 2 aperture Bracewell
 - Stellar leakage +
 instrument thermal emission +
 astronomical backgrounds
 must be stable to < ~1/5 planet
 - -2.5×10^{-8} of star flux at few mHz

- Phase-chopping architectures put planet signature at ~0.1 Hz
 - → Insensitive to mHz signal drifts
 - BUT other systematic problems appear on the same time scales
- Technology objective: demonstrate controls adequate to counteract dual Bracewell systematic errors

Tighter budget for null depth makes it easier to meet stability requirements

Single Bracowell				
Single Bracewell example	Requirement (10 ⁻⁵ null)	Stability for "Earth" detection	Goal (10 ⁻⁶ null)	Stability for "Earth" detection
Intensity match	2.8×10 ⁻³	8×10 ⁻⁶	9×10^{-4}	2.6×10 ⁻⁵
Delay jitter	4.5 nm	0.013 nm	1.4 nm	0.04 nm
Polarization rotation	10 arcmin	0.03 arcmin	3 arcmin	0.09 arcmin
Tip-tilt (sky angles)	9 mas	0.026 mas	2.8 mas	0.083 mas
(Airy radii)	1.5×10^{-3}	4.3×10^{-6}	4.7×10^{-4}	1.4×10^{-5}
Wavefront error	4.5 nm rms	0.013 nm rms	1.4 nm rms	0.04 nm rms

- Equal budget allocations for 5 terms
- Tighter null depth \rightarrow looser stability req't $\sim 3\%$ of tolerance
- Looser null depth \rightarrow tighter stability req't $\sim 0.3\%$ of tolerance
- Tighter fractional stability of these quantities is a higher risk

Stellar companions as science targets

- Known companions: Older EGPs, brown dwarfs
- Expected/unknown: Hot young EGPs, EGPs not found by RV
- Prefer older planetary systems
 - Lower EZ dust levels \rightarrow easier planet detection
 - Best TPF candidate stars will be older
- Prefer contrast $\sim 10^{-5}$ or fainter
 - Take on technical challenge comparable to TPF, not 100-1000x easier

Known extra-solar giant planets

- "Desert" gap in distribution of planets vs. angle at 100-150 mas
- Six planets have
 - Contrast $> 3 \times 10^{-6}$
 - Max angle > 150 mas
 - Requires >76° sky coverage
- Six planets have
 - Contrast $> 1 \times 10^{-6}$
 - − Max angle > 96 mas
 - Ecliptic latitude < 30°

Planet/star contrast vs. angular separation

Second option preferred

Brightness and contrast for planet are calculated assuming 3Gyr age

- Only need a sunshade for 30° from anti-sun
- Beyond the desert → increasing length gives more planets

Phase 2 CINDIS in the Delta 2326-9.5 launch shroud

- Expandable truss, 15m+
 - "Able mast" or equivalent
 - Studies indicate this construction can be made sufficiently stable
- Telescopes mount on top
 - Apertures 0.4m diam, TBR
- Multi-layer sunshade deploys with boom
 - Allows >30° from anti-sun

Dual Bracewell performance allocations

- Performance budget tables
 - Null depth
 - Systematic errors

						F
		multi- plier		Leak	Leak variation	ı
Total s	tar leakage (tot)			2.09E-05	1.00E-07	
↑ St	ellar disk leak			1.26E-05	4.51E-10	
— <mark>In</mark>	strument null depth			8.33E-06	1.00E-07	
	Leak due to phase			5.72E-06	8.78E-08	
	↑ Phase errors	× 2	2.39E-03		↑	
	↑— OPD		2.05E-03		8.42E-08	
	— Focus		-9.50E-04		1.79E-08	
	Other WFE		7.78E-04		1.72E-08	
	Leak due to amplitude			2.33E-06	4.45E-08	
	Amplitude errors	× 2	-1.43E-03		↑	
↑ Tip-tilt		× 2	-6.37E-04		3.06E-08	
├─ Coma		× 2	4.40E-06		1.10E-08	
astig		× 2	-3.54E-05		1.01E-08	
	trefoil etc.	× 2	-1.32E-06		1.88E-09	
	focus+sphab	× 1	-8.68E-05			
	Ampl imbalance	× 2		1.48E-07	-2.85E-08	
	Polarization	× 2		2.80E-07	5.00E-09	
	biref			7.00E-08		
	diatten			7.00E-08		
	Cophasing of nullers A & B 1.03E-08					
	Amplitude-phase cross-terms 1.50E-08					
Optics	Optics thermal emission 8.65E-08					
	olar stray light 8.65E-08					
Exo-zo	diacal light				8.65E-08	
Local z	ocal zodiacal light 8.65E-08					

RMS aberr phases (rad)		ĺ				
Nuller A-B dif	(A+B)/2 avg	variation	1			Stability
2.05E-03	2.05E-03	4.10E-05	piston	3.27E-09	m jitter	6.53E-11
2.70E-03	2.70E-03	5.40E-05	focus	4.30E-09	m rms	8.59E-11
1.35E-02	1.35E-02	2.70E-04	sph_ab	2.15E-08	m rms	4.30E-10
4.00E-02	4.00E-02	8.00E-04	tip/tilt	8.91E-07	rad	1.78E-08
2.00E-02	2.00E-02	8.00E-04	coma	31.83 nm		1.27 nm
1.00E-02	1.00E-02	1.00E-03	astig	15.92 nm		1.59 nm
2.00E-03	2.00E-03	1.00E-03	trefoil etc	3.18 nm		1.59 nm
0.20%		2.00E-05	ampl imbal (λ indep)		
ı	_	8.17E-04	cophasing			1.30 nm
		1.67E-05	Effective bas	seline	1	2.50E-04

Data harvest

In addition to science measurements, CINDIS will produce a rich characterization of the instrument performance

- Extensive suite of diagnostic sensors is integrated into the design
- Verify performance of components & subsystem controls
 - Active delay and pointing control
 - Passive amplitude and polarization matching
- Verify system null depth and null stability budgets
- Study thermal control & stray light
- Compare instrument performance to budgets and model predictions
 - Establishes a strong foundation for TPF system engineering

CINDIS Phase 1 Optical System Model

CINDIS Phase 2 deployed

CINDIS Phase 2 optical schematic

Dual Bracewell

Residual from Tilt of Telescope Axis with FSM Correction

- Residual due to effect of telescope working off-axis
 - -100 nrad tilt = 0.0033 Airy, telescope diam 0.4m

For 60× larger tilt than this (6μrad), stellar leak after spatial filter ~5×10⁻⁹

For just this tilt (0.1 µrad), stellar leak after spatial filter $\sim 2.5 \times 10^{-9}$

Residual from distortion within telescope body

• Tilt primary with respect to secondary

→ Spatial filter

For 3µrad tilt, stellar leak after spatial filter is ~2×10⁻⁹

Residual from telescope despacing

• Move primary to secondary (10nm).

For 30× smaller despacing (0.3 nm), stellar leak after spatial filter ~2.5×10⁻⁹

First 6 structural bending mode shapes of a 40m truss

Control System Bandwidth and Sensor Noise

- For rejection at 40 Hz, sample rate must be >1000Hz.
- Assume photon throughput of 10%
 - Photons/update = 1.69×10^4
- Control system rejection greater than 10x for modes with a frequency out to 18 Hz.
- If these limits leave inadequate performance, the base motion must be reduced another way
 - Laser metrology?

LOS jitter introduced by control system from photon noise from tip/tilt sensor as a function of star visual magnitude

Control system performance for first 6 bending modes

Mode no.	Rejection factor
7	560
8	281
9	222
10	199
11	126
12	14

RW Model - Disturbance Source

- Cluster of 5 RW on single pallet
- Forcing components increase by (wheel speed)². RW internal resonance at 90 Hz included
- Radial forcing harmonics shown in figures for small fast RW (HR0610) Fundamental wheel harmonic (3rd& 4th) provides dominant disturbance.
- Wheels are balanced to HST levels to minimize out-of-balance induced forces and torques.
- Disturbance is applied to the RW node of the coupled structural/optical model

Residual Vibration from Reaction Wheels - Isolation and translation mirror rejection

- Motion of telescopes from RW input, residual jitter is RMS of total displacement vector.
- Isolator natural frequency at 0.5 and 1 Hz
- Control BW's of 10, 20 50, 100 Hz for isolator set at 1 Hz resonance

Residual Vibration from Reaction Wheels - Isolation and Fast Steering Mirror rejection

- Motion of telescopes from RW input, residual jitter is RMS of total rotational motion
- Isolator natural frequency at 0.5 and 1 Hz
- Control BW's of 10, 20 50, 100 Hz for isolator set at 1 Hz resonance

10²

Conclusions

- CINDIS Phase 1 was a carefully targeted, conservative, low risk, \$300M technology demonstration for TPF
 - Forego scientific objectives to keep cost and cost risk low
 - Tailor instrument to prove instrument technologies to fullest extent
- CINDIS Phase 2 adds compelling science
 - Studies of known extra-solar giant planets, search for others
 - TPF science and technology precursor advances all key technologies to
 TRL 8 or 9 except for formation flying interferometry
- Nulling interferometry is hard
 - Chopping architectures (4 apertures or more) are needed for TPF
 - Systematic errors are greatly mitigated, but significant vulnerabilities remain
 - Sensors & controls may tame these new problems, but concepts are complex
 - Stability requirements for chopping architectures are difficult to understand and challenging to achieve
 - Chopping nulling interferometer tech demo needed for TPF